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1. INTRODUCTION

A best approximation (F) to a function { f) from a varisolvent family, as
defined by Rice, is characterized by alternation of f — F. We consider the
space Cla, b] of real valued continuous functions on an interval [g, b], with
the uniform norm. A best approximation to a function (f) from a family
of generalized rational functions is also characterized by alternation criteria.
However, only special cases of generalized rational approximating families
are varisolvent.

We show that a family of generalized rational functions is varisolvent with
respect to an extended definition of varisolvency introduced by Gillotte
and McLaughlin. Some properties of families of generalized rational
functions, in particular the alternation criteria, are then shown to follow
from varisolvency. Further topics include a de La Valiée Poussin theorem,
uniqueness results and approximation using a generalized weight function,
for varisolvent families in the extended sense.

In [6], Gillotte and McLaughlin prove that the generalized exponential
family E,, (cf. [12, p. 111]) is varisolvent in the extended sense. Thus, we
note that with respect to Rice’s definition, E, and a family of generalized
rational functions are not varisolvent except in special cases. However,
both families are varisolvent with respect to the extended definition.

We shall use the following notation. For g e Cla, 6], we define
I gl = maxXge[q1 | g(x)|. Further, given a nonempty family of functions #
in Cla, b], we say that F ¢ Z is a best approximation to fe Cla, b} from F#
if|f—F| <|f— G| forall G in Z.

2. RESULTS ON VARISOLVENCY

First, we present four definitions, which introduce the extended definition
of varisolvency that appears in [6].
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DermvimioNn 1. Let {/;}7; be a sequence of closed intervals (n > 1).
The sequence will be called an increasing sequence of closed intervals if
for every x in [; and every yin I ; (1 <i < m), x < y is valid.

DeriNITION 2. Let Fe Cla, b]. Then F is said to have n{rn > 1) sign
changes on [a, b] if there exist points {x}' ', @ < x; < ** < Xpy < D,
such that F(x;) F(x,,,) << Oforalli (1 <i < n).

DermiTiON 3. Let & be a family of functions in Cla, b] and let Fe %,
The ordered pair of integers (n, , ny) with n, 2> 0 and n, > 1 is a degree
of F with respect to & if the following conditions hold:

1. Let ¢ > 0 and o in {—1, 1} be arbitrarily chosen. If n; = 1, there
exists a Ge% such that |F — G|l < e and o(—1)(F(x) — G(x)) > 0 on
[a, b]. If n, > 1, if § is an arbitrary element of {0, 1} and if {[c,, d;]}/2°
is an arbitrary increasing sequence of closed intervals, where ¢; = a and
d, s = b, then there exists a G €% such that |F — G| <e and
o(—1DHF(x) — Gx)) >0 on [¢;,d] forall i (1 < i< n —0)

2. If Ge Cla, b] and F(x) — G(x) has n, sign changes on [a, 5], then G
is not in %

DermNITION 4. Let % be a nonempty family of functions in Cfa, b].
Then & will be called a varisolvent family if every F € % has a degree with
respect to #.

In [6] it is shown that Definition 4 is an extension of Rice’s definition
of a varisolvent family. (Observe that part 2 of Definition 3 states that F
has weak property Z of degree n, as defined by Dunham [5].)

For later use we introduce the following modification of Definitions 3
and 4.

DermiITION 3. Let & be a family of functions in Cla, b} and let F e #.
Then (i, , n,) will be a degree for F with respect to Z# if either:

1. n, = 0and n, > 1 are integers and Definition 3 holds, or
2. ny > 0is an integer, n, = + oo and part 1 of Definition 3 holds.

DeriNitIoN 4. Let & be a nonempty family of functions in Cla, b].
Then # will be called a varisolvent family if every Fe % has a degree,
according to Definition 3’, with respect to .

We observe that in the case (n; , +c0) is a degree for F € %, only the integer
ny gives information about the relation of F to the rest of the family #. We
also note that all theorems in [6] concerning varisolvent families, with respect
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to Definition 4, are valid with respect to Definition 4". Unless specified
otherwise, a “varisolvent family” will refer to a family satisfying Definition 4.
We now present a number of new results about varisolvent families.

Lemma 1. (de La Vallée Poussin). Let & be a varisolvent jamily, let
Fe%F with degree (ny,ns,), and let fe Cla, bl. If there exist k points,
a < xp < < xp < b, with k > ny such that (f(x)) — FOe)Xf (X)) —
Flxg ) <Oforalli (1 <i <k — 1) then it foliows that

inf [ £~ G| = min, | f0e) — F(x).

Proof. Assume not. It is easy to show that there exists a G € .% such that
F(x)y — G(x) has n, sign changes on [a, b]. Q.E.D.

LemMA 2. Let Wi(x,y) be a real valued function defined on [a, bl X
{—c0,00) satisfying (a) W(x, v) is a strictly increasing function of y for every
x in [a, b), and (b) Wix, y) is continuous on [a, b] X (—co, ). Let F be
a varisolvent family on [a,b). Then W = {W(x, F(x))|Fe %, x<[a, b}}
is a varisolvent family on [a, b). Further, if Fe€ & has a degree (ny , n,), then
(ny , ) is also a degree for W(x, F(x)).

(Note that Lemma 2 is a generalization of a result given by Kaufman
and Belford in [7].)

Proof. ¥ is a nonempty family of functions in Cla, b]. We show that each
Wix, F(x)) € ¥ has a degree.

Let W(x, F(x)) be an arbitrary element of #". Since Fe Z, it has a degree
(1, , ny) with respect to #. We show (i, , n,) is a degree for W{(x, F(x)) with
respect to #7,

Consider first n, . If n, = + o0, there is nothing to show. Thus, assume
1 <m, < oo and assume there exists W(x, G(x)) e #  such that
Wix, F(x)) — W(x, G(x)) has n, sign changes on [a, b]. Hence, there exist
points a < x; < < X, 4y < b with

[W(x; s F(x)) — Wiy, G (i, Flx)) — Wik, GOoa))] < 6,

forall i (1 << i << my). (h

Recall that for any real number u, sgnu = u/f| «|if u == 0 and sgnu = §
if u = 0. We observe that assumption (a) guarantees that
sgn[W(x, F(x)) — W(x, G(x))] = sgn[F(x) — G(x)], @)

for all xela, b] and any Ge%. Applying (2) to (1), we obtain that
[F(x;) — Gx)IF (x50 — Glxs1)] < 0 for all i (I < i < n,). This contra-
dicts the fact that (n; , #,) is a degree for F.
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Consider next n,. Let ¢ >0 and o in {—1,1} be given, and let
I = [mingr, 51 F(x) — €, MaX,, 1 F(x) + €]. Since W(x, y) is uniformly
continuous on [a, b] X I, assumption (b) guarantees that an ¢* > 0 exists
such that | z; — z, | < €* implies | W(x, z;) — W(x, z,)| < efor all x € [a, b]
and all z; , z, in 1. Hence, for any G € &,

IF =G| <e* = [ W F)— WGl <e 3

Assume now that n, = 1. Since Fe % has (n,,n,) as a degree in ZF,
there exists a G € & with || F — G || < €* and with o(—D[F(x) — G(x)] > 0
on [g,b]. Using (2) and (3), we obtain || W(-,F) — W(, G)|| < ¢ and
o(—D[W(x, F(x)) — W(x, G(x))] > 0 on g, b]. Thus, Definition 3 is
satisfied for ny = 1. If n; > 1, a similar argument using (2) and (3) holds.
Therefore, W(x, F(x)) has (n; , n,) as a degree with respect to #". Q.E.D.

We give next results on the uniqueness of best approximation with respect
to a varisolvent family. Recall that the generalized exponential family £,
is varisolvent. In [2, p. 315], Braess has presented a class of continuous
functions, each having at least two best approximations from E,. Thus,
best approximation in a varisolvent family is, in general, not unique.

From the class of functions given by Braess, it is easy to choose one with
two best approximations from E, , each best approximation having a degree
(3, 4). This fact led to the following conjecture. Let fe Cla, b}, let F be a
varisolvent family, and define &, = {Ge & ] if (n;,n,) is a degree for G,
then n; = 0}. Assume F(x) € & is a best approximation to f with a degree
(n, , ny) where n; = n,. It was conjectured that F(x) is then the unique
approximation to f from &% — &%,. We show with two examples that this
conjecture is false. First, we state the following characterization theorem
for best approximations [6].

THEOREM 1. Let F be a varisolvent family on [a, b] and let f Cla, b).
Assume F € F has a degree (ny , ny) with respect to F.

1. If||f—F| <|f— G| for all G in F, then either f(x) — F(x) is
a constant function or f(x) — F(x) alternates n, times on [a, b].

2. Iff(x) — F(x) alternates n, times on [a, b] then | f — F|| < || f — G|
Jorall Ge F.

Recall that the definition of “alternates” is as follows.

DerFINITION 5. Let e € Cla, b, e nonzero. Then e(x) is said to alternate
n times (n == 0) on [a, b] if there exist points a < x; < -»* < X, <D
such that |e(x;)| = |le| for all i (1 <i<n+1) and e(x;) e(x;.q) <O
forall i (1 < i < n 4+ 1). The points {x,}%7} are called an alternation set.
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ExampieE 1. Let P, be the polynomials of degree one or less, let
la, ] = [0, 5%/2], and let R denote the real numbers. Define L € C[0, 57/2] as

/2

Lixy = —2/mx +1, 0<x<m
x < 572,

=0 7[2 <

1t is easy to see that the family & = P; U {L(x) + r | r € R} is varisolvent,
where (2, 2) is a degree for Fe % if Fe P; and (1, 3) is a degree for Fe &
if Fe{L(x) —r!|re R}. Note that &, is empty, and thus, F — &, = F.

Consider f(x) = sin x. Observe that the zero function, O(x), in P, has
degree (2,2) in # and that f(x) — O(x) alternates twice on [g, b]. Thus,
O(x) is a best approximation to f(x) from #. However, L(x) is also a best
approximation to f(x) from %.

ExamMpLE 2. Let P; be the polynomials of degree three or less and let
la, b] = [—1, 1]. It has been shown in [6] that & = {O(x) | O(x) is the
zero function in Pyt U {F e Py ! for some x;, x, with —1 << x <x, < |,
F(x) F{x,) < 0} is a varisolvent family with a degree (4, 4) for each F e Z .
{t is easy to verify that # = F# U {2 | x| + r | r € R} is a varisolvent family
with a degree (4,4) for Fe % if Fe %, and a degree (1, 5) for FeF if
F(x) =2 x| +r for some re R. Note that &#, is empty, and thus,
F — Fy = F.

Consider f(x) = 1. The zero function from P; is a best approximation to
F(x) from #. But 2| x | is also a best approximation to f(x) from #.

In both examples, we have a best approximation O(x) € & with a degree
(1, , 1y), By, = By, which is nonunique in # — £, . Inexample 1, f(x) — O(x)
alternates, and in Example 2, f(x) — O(x) is a constant function. However,
the following uniqueness result does hold.

TaEOREM 2. Let fe Cla, b] and let F(x) be a best approximation to f
on [a, b] from a varisolvent family . Assume F has a degree (i, , n,) with
ny == n, and that f(x) — F(x) alternates n, times. Then if Ge F is a best
approximation to f from F with a degree (my , my), my = 1, then f(x) — G(x)
must alternate my times. (In particular, f(x) — G(x) may not be a constant
Junction.)

Proof. We show that it is impossible for f(x) — G(x) to be a constant
function. The theorem then follows from part 1 of Theorem 1.

Assume f(x) — G(x) is a constant function, ie., f(x) — G(x) = C on
la, b}, C a real number. Since F is a best approximation to fand f(x) — F{x)
alternates n; > 1 times, we know C == 0. Assume C > 0. (A similar argu-
ment holds if C < 0.). Note that || f — F| = C.
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Case 1. my; =1

By varisolvency, there exists a G, €% with |G, — G| < C and with
Gi(x) — G(x) > 0 on [a, b]. Hence, we have || f — G, || < C. This contradicts
the fact that G(x) is a best approximation to f(x).

Observe that if G(x) has (1, m,) as a degree, where m; > 1, the previous
argument holds. Cases 2 and 3 handle the situation that »; > 1, and that
G(x) does not have (1, m,) as a degree.

Case 2. m;y =2k+1;k>=1

Let A = {x;}2i* be a set of alternation points for f(x) — F(x). Define
= mlnl<l§’ﬂ1+1 {xz €A F(xz) = f(xs) + C}

Subcase 2a. a << x; < b. By continuity, there exists an « > 0 such that
o < min{x; —a, b — x;} and such that for all xel; = (x; — «, x; + o),
F(x) > f(x). Let B = Qu)/[(my — 2) + (my — 2) + 1] > 0. Consider the
following increasing sequence of closed intervals: [¢;, dy] == [a, x; — &,
[em, > dm ] = [x; -+ o, b] and

[ei,di] = [x; —a -+ Qi —=3) B, x; — 0+ 20— D f]

forall i (2 < i << m; — 1). The varisolvency of G(x) guarantees the existence
of GieF w1th Gy — G| < CJ2 and (—D(—DG(x) — G(x)] > 0, on
[e;, d;] for all i (1 < i<Cmy). Observe that Gy(x) > G(x) on [a, b] — I;
and that F(x) > f (x) on I;. Since 4 = {x, )71 is an alternation set for
f(x) — F(x), it follows that [G,(x;) — F(x)][G1(xs11) — F(x;.1)] < 0 for all {
(I <i<n). Thus, Gi(x) — F(x) has n, = n, sign changes on [a, b], a
contradiction.

Subcase 2b. x; = a. We modify the proof of Subcase 2a. By continuity,
there exists an « > 0 such that « < b — g and such that for all xe I, =
[x;, x; + @), F(x) > f(x). Let B = of[(m; — 1) + (my; — 1)] > 0. Consider
the following increasing sequence of closed intervals:

le;,d] = Ix; +2G — 1) B, x; + (20 — 1) B] AI<i<m—1),

and [cm R m] [xJ + «, b]. The varisolvency of G(x) guarantees the
existence of G1 & such that

16, =Gl <C2 and (—=D(—=D[Gy(x) — G(x)] >

on[e;, d;]foralli(l << i << my). Observe that Gy(x) > G(x)on [a, b] — I, =
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[x; — «, b] and that F(x) > f(x) on J; . Again since {x;}/27" is an alternation
set for f(x) — F(x), it follows that

[Gi(x) — FOx)lGi(xin) — Flxiu] <0 foralli(l <7 <m).
Hence, Gy(x) — F(x) has n, = n, sign changes on [q, #], a contradiction.
Subcase 2¢.  x; = b. This is handled by a proof similar to Subcase 2b.

Case 3. my, =2k, k=12

It is shown in [6] that if G € & has a degree (711, , m5), then (my, — 1, niy)
is also a degree with respect to & as long as m, is not zero or three. Hence,
Case 3 reduces to Case 2. Q.ED.

3. GENERALIZED RATIONAL APPROXIMATION

The definition of generalized rational functions given by Cheney in [4]
is as follows. Let P and @ denote two finite-dimensional subspaces of Cla, 5].
1t is assumed that O contains at least one function that is positive throughout
[a, &]. The approximating family

R* = {p(0))q(x)|pe P,qe Q, x€la, b, g(x) > 0 on [a, b]}

is called a family of generalized rational functions. Henceforth, R* will
denote an aribtrary nonempty family of generalized rational functions.

We give first Rice’s definition of varisolvency and then show R* is not,
in general, varisolvent with respect to Rice’s definition. Recall that in special
cases, for example in the case R* is a family of rational polynomial functions,
R* is varisolvent with respect to Rice’s definition, (cf. [10, p. 78]).

DeFNITION 6. Let & be a family of functions in Cla, 5] and let Fe %.
Then F is said to have the integer » > 1 as a degree with respect to F if
the following conditions hold:

1. Let an arbitrary set of n distinct points {x;}7; in [@, b] and let ¢ > 0
be given. Then there exists a 8(F, ¢, {x;}_1) = & > 0 such that for any set of
real numbers { p, 37, with |y, — F(x)| < 6 for all 7 (I <7 < n), there
existsa Ge F with G(x;) =y, foralli(l <i < wand || F -G <e.

2. If Gisin & with G(x;) = F(x;) for all i (1 < i << n), where {x;}7;
is a set of » distinct points in [a, b], then F and G are identical.

DermatioNn 7. Let & be a nonempty family of functions in Cla, 5]
Then & will be called a varisolvent (Rice) family if every F e & has a degree
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with respect to #. Example 3 shows that R* is not, in general, a varisolvent
(Rice) family.

ExampLE 3. Let [q, 5] = [—1, 1], let Q be the linear space of constant
functions on [a, b] and let P be the linear span of x. Consider the generalized
rational family R* = {p(x)/q(x) [ pe P, qeQ, q(x) > 0 on [—1, 1]}. We
show it is impossible to assign a degree to the zero function, O(x), in R*.

Assume R* is varisolvent (Rice) on [—1, 1] and that O(x) has a degree
n > 1. Since r(x) = x € R* has one zero with O(x), this implies n > 2.
Consider

fx) =1, —1 <x <0
= —2x +1, 0 <x<1.
O(x) is a best approximation to f(x) from R*. However, f(x) — O(x) alter-

nates only once. Since #n > 2, this contradicts the following characterization
theorem (cf. [8, 11]).

THEOREM 3. Let F be a varisolvent (Rice) family, let fe Cla, b] and let
Fe % have degree n. Then F is a best approximation to f from F on [a, b]

iff either
f(x) — F(x) alternates n times on [a, b], or
2. f(x) — F(x) is a constant function on {a, b).

We next proceed to the proof that a family of generalized rational functions
is varisolvent in the extended sense of Gillotte and McLaughlin. The following
notation is used. Let M be a finite-dimensional subspace of Cla, b]. Then

8(M) = dimension of M,
v(M) = 1 + maximum number of variations in sign possessed by
members of M, (y(M) = + o possible),
(M) = max{8(H) | H is a Haar subspace of M}.
Recall that an n-dimensional subspace H of Cla, b] is an n-dimensional

Haar subspace if each nonzero element of H has at most n — 1 distinct
zeros in [a, b]. For a fixed element r(x) = p(x)/q(x) € R*, define

P+rQ ={p(x) +r(x)q(x)|peP,qecQ, x¢ela,b]}.
Note that P + rQ is a linear subspace of Cla, b].

THEOREM 4. Let R* be a family of generalized rational functions. Then R*
is a varisolvent family where an element r € R* has a degree (n,,n,) with

ny = (P + rQ)andn, = y(P + rQ).
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Proof. Let r(x) == p(x)/q(x) be an arbitrary element of R* and let
ny, = (P +rQ), ny=y(P+rQ). Consider first n, = y(P 4 rQ). If
ny = 00, there is nothing to show. Thus, suppose n, << oo and assume
there exists an r;(x) = pi(x)/q:.(x) € R* such that ry(x) — r(x) has n, sign
changes on [a, b]. Hence, there exists points

a<x < < Xy b
such that

[ra(xs) — rGe)llr(xisg) — r(x)] <0, foralli (L <7 <<my).
Since g4(x) > 0 on [a, b], we have
[pa(x) — r(x) gl pa(xon) — r(x4p0) gi(xi)] < O

for all i (1 <7 < ny). Thus, py(x) — r(x) go(x) has ny, = (P + rQ) sig
changes on fa b] But py(x) — r(x) go(x) = po(x) + r()[—q(x)] is an
element of P + rQ. This contradicts the definition of y(P - rQ).

Consider next n; = n(P + rQ). If n;, = (P + rQ) == 0, there is nothing
to show. Thus, assume n; > 1. We use the following remark given in [6].
Suppose K is an r;-dimensional Haar subspace on [a, b]. Let & be an arbitrary
element of {0, 1} with § < n;. Let {x}/2/"° be a set of points with
a = x; < <X, 5= b Then there exists a k € K with k(a) k(b) # 0
such that (—1) k(x) > 0 on (x;, x;.) forall i (1 <7 < ny — 9.

Consider part 1 of Definition 3. Let € > 0 and o in {—1, 1} be arbitrarily
chosen. Let & be an aribitrary element of {0, 1} with 8 < n, . Assume that
{le;, d;}2;® is an arbitrary increasing sequence of closed intervals with
¢ =a and d, ;=>5 Define x; =a, x;={(1/2)(d;; ¢ for all i
QR<i<n— 8) and x, s = b. By the definition of ny = n(P + r(Q)
and the previous remark we know there exists a function ke - 0,
with k(a) k(b) == 0 such that (—1Yk{x) >0 on (x;,x;) for all §
(1 < i < ny — 8). Using the continuity of k(x) one can actually show that if
=8> L {(—Dk(x) > 0o0n[xy, x), (— DM k(x) > Oon (X5 > Xn—5:1]
and if , —8 =1, (—DKkXx) >0 on [x;,x,]. Since [¢, J C {xl Xa),
fe;, d] C(x;, xsy) for all i (1 <i < n — 0) and fen s, dn 5] C
(Xn, 5> Xn, 5] for my — 6 > 1 and [e;, di] C [x;, x,] for my — 8 =1, we
have (wl)z k(x) > 0onic;,d]foralli(l < i <n— o).

Let alx) = ok(x). Since o€ P + rQ, afx) may be written as ofx) =
{0y + (p(x)/g(x)) g1(x) for some p; € P and ¢, € Q. This implies

(%) g(x) -+ p(x) 1(x) = g(x) o). 4)
Consider

. px) — €1P1(x_)_
) = g(x) -+ eqi(x)’
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where e >0, ¢ to be chosen later, is sufficiently small so that
g(x) + eq1(x) >0 on [a, b]. Since P and @ are subspaces and
q{x) -+ e,q1(x) > 0 on [a, b], ry is in R*. Using (4), we obtain

_ P px) — epi(x) _ alpy(x) 9(x) + p(x) ga(x)

) =) =0y T T en T d0OE®  anl)
L ede®) ok
TG T a@n®) 90 T )
Thus

o(—=1yIr(x) — ()] = o(—=D[(e20k(x))N(g(x) + e1g:(x)]
= [e/(q(x) + eg(NI—1)* k(x) > 0,

on fc;,d]foralli (1 <i<n —39).

We note that |7 — ry || = [MaXpepa,5 (| K] (%) -+ €1(x)))] - € . Since
g(x) > 0 on [a, b], a short argument shows e; can be chosen sufficiently
small such that || ¥ — ry || << € and g(x) + e,q1(x) > 0 on [a, b] hold simul-
taneously. Hence, r, € R* has the required properties stated in Definition 3,
part 1. Therefore, (n,,n,) with n, = n(P +rQ) and n, = y(P + rQ) is
a degree for r € R*, Q.E.D.

Lemma 3. Let R* be a family of generalized rational functions. Let
r € R* have a degree (ny, n,), where ny = n(P -+ rQ) and n, = v(P + rQ).
If n(P 4+ rQ) = 1, then r has (1, n,) as a degree with respect to R*.

Proof. By definition, n(P 4+ rQ) > 1 means that P -}- rQ contains a Haar
subspace of dimension greater than or equal to one. Recall that every Haar
subspace of dimension #, 2> 1 contains a function that is positive on [a, 5]
(cf. [1]). Thus, there exists a function k € P - rQ such that (—1) &(x) > 0
on [a, b). The proof is completed by employing the arguments that appear
in the proof of Theorem 4. Q.E.D.

Remark 1. Let F be in &# where & is a varisolvent family. Assume F
has (1, n,) as a degree and that F is a best approximation to fe Cla, b]
from %. It is easy to see that f(x) — F(x) may not be a nonzero constant
function. Thus, Lemma 3 implies that if 7 is a best approximation to = C[a, b]
from R* and n(P + rQ) = 1, f(x) — r(x) is not a nonzero constant function.

A number of results concerning a family of generalized rational functions
now follow from the fact that such a family is varisolvent. We state first
the characterization theorem for best approximations [4]. This theorem uses
the following modified definition of alternation.

DermutioN 8. A function e € Cla, b] is said to alternate n > 0 times on
[a, b] if exist points a << x; << *** < X,y < b such that e(x;) = (—1)*A
foralli(l <i<n-+Dwith|A] =]e].
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THEOREM 5. Let R* be a family of generalized rational functions and
let r ¢ R*. If the error function e = f — r alternates at least y(P + rQ) times,
then r is a best approximation to f from R*. If r is a best approximation fo f
Jrom R*, then e alternates at least n(P + rQ) times.

We see from Theorem 4 and Remark 4 that Theorem 5 follows from the
general characterization theorem for varisolvent families, i.e., Theorem 1.

We note that in the situation re R* is a best approximation and
ny = n{(P -~ rQ) = 0, Theorem 5 allows the possibility that f(x) — r{x) is
a nonzero constant function. Example 3 illustrates that this can occur.
Recall that in Example 3, [g, #] = [—1, 1], Q is the constant functions and
P is the linear span of x. Each r € R* has (0, 2) as a degree. Observe that the
zero function O(x), is a best approximation to f(x) = 1 from R* and that
e(x) = f(x) — O(x) is a nonzero constant function.

We mention next the de La Vallée Poussin theorem for generalized rational
functions {(cf. [4, p. 163]).

THEOREM 6. Let R* be a family of gemeralized rational functions, let
re R* and let f € Cla, b]. Assume that f — r is alternately positive and negative
at the points a < xy < < Xx, < b with k > y(P 4+ r0). Then
inf, e+ L/ — ] 2 mingqqp [ () — ()

This result now follows from Lemma 1.

Finally we mention Lemma 2. If R* is a family of generalized rational
functions, Lemma 2 implies that %" = {W(x, r(x)) |re R*, xc[g, b}} is a
varisolvent family. In particular, the characterization theorem (Theorem 1)
for varisolvent families may be applied to the problem of approximating
fe Cla, b} by elements of #". A result of this type has been given by
Moursund and Taylor. They use the following terminology. Assume that
Wi(x, y) satisfies: {(a) W(x, y) is continuous on [a, ] X (—c0, c0),
{(b) sgn Wix,y) = sgn y for all x in [a, b] and (¢) for each x, W{(x, y) is
strictly monotone increasing in y with limy,|,., | Wix, y)| = co. For fixed
feCla, bl, f¢ R* and r € R, the weighted error curve W{x, f(x) — r(x)) is
said to alternate # > 0 times if there exist points g < x; << " < xp; < b
such that | W{x;, f(x;) — r(x)) = (—1)¢A, for all 7 I <i<n+1),
where A | = | W(-,f—r)|. The problem under consideration is: given
JeCla, bl f¢ R*, find r e R* such that || W(, f — r)|| < inf, cr+ | W, — 1)l
Such an r is called a best approximation to f “with respect to the generalized
weight function, W(x, y).”

The following result appears in [9].

ToEOREM 7. Let fe Cla, bl, /¢ R* and let v € R*, where R* is a family
of generalized rational functions. If W(x, f(x) — r(x)) alternates at least



12 WILLIAM H. LING

v(P =+ rQ) times, then r is a best approximation to f with respect to W(x, y).
If r is a best approximation to f with respect to Wix, y) then W(x, f(x) — r(x))
alternates at least n(P + rQ) times.

Remark 2. For a given fe Cla, b] and a given family R*, it is easy to
show ¥, = {W(x, f(x) — r(x))| r € R*} is a varisolvent family. In particular,
if re R* has a degree (n,, ny), then (n, ny) is also a degree for
Wix, f(x) — r(x)). The proof that #7 is varisolvent follows the same reasoning
that is used in the proof of Lemma 2.

Remark 3. For a given fe Cla, b] and a given family R*, the following
two problems are equivalent.

Problem 1. Find a best approximation re R* to f with respect to
W(x, y).

Problem 2. Find a best approximation W(x, f(x) —r(x))e#7 to the
zero function on [a, b].

We observe that from Remarks 2 and 3, Theorem 7 follows from the general
characterization theorem for varisolvent families, Theorem 1.

Some results on generalized rational functions do not follow, however,
from varisolvency. We mention the uniqueness theorem that appears in
[3, p. 104].

TueOREM 8. Let R* be a fumily of generalized rational functions, let
fe Cla, b], and let r € R* be a best approximation to f. If P 4+ rQ is a Haar
subspace, then r is unique.

Remark 4. Assume re R*, with P --rQ a Haar subspace, is a best
approximation to f. We show one cannot conclude that » is unique from the
fact R* is a varisolvent family. Recall that r is a varisolvent function with
a degree (1 , ny); ny, = y(P + rQ), and n, = y(P 4 rQ).

We use two facts given in [3]. Fact one is: y(P 4 rQ) = &(P + rQ) >
(P -+ rQ) holds for any r € R*, and fact two is: P 4 rQ is a Haar subspace
if and only if 8(P + rQ) = n(P + rQ).

Assume now that n; = n, . This implies that (P -+ rQ) = n(P + r0).
Hence, P + rQ is a Haar subspace. Theorem 8 quarantees that r is unigue.
However, Examples 1 and 2 show that there exist varisolvent families with
a best approximation, F(x), having a degree (n;,ny), #; = ny, and yet
F(x) is not unique.

ACKNOWLEDGMENT

The author would like to thank Professor Harry W. McLaughlin for a valuable
suggestion.



(%)

10.

11,

VARISOLVENCY AND RATIONAL APPROXIMATION 13

REFERENCES

N. I. Acurissr AND M. G. KRrEIN, Some questions in the theory of momenis, Transi.
Math. Monographs, Vol. 2, Amer. Math. Soc., Providence, R.1., 1962,

. D. Bragss, Uber die Approximation mit Bxponentialsummen, Compuring 2 (1967),

309-321.

. E. W. CHENEY, Approximation by generalized rational functions, iz “Symp. Approx.

Functions, pp. 101-110. sponsored by General Motors Laboratory, Elsevier, Amster-
dam, 1965.

. E. W. Creney, “Introduction to Approximation Theory,” McGraw-Hill, New York,

1966.

. C. B. DuxsaM, Partly alternating families, J. Approximation Theory 6 (1972), 378-386.
. M. J. GiirortE, JR. AND H. W. McLAUGHLIN, On nonlinear uniform approximation,

to appear.

. E. H. Kaurman, Jr. AND G. G. BeLrorD, Transformations of families of approximating

functions, J. Approximation Theory 4 (1971), 363~-371.

. W. H. Ling axD J. E. TorNGA, The constant error curve problem for varisolvent

families,” J. Approximation Theory 11 (1974), 54-72.

. D. G. Moursunp aND G. D. TAvLor, Uniform rational approximation using a

generalized weight function, SIAM J. Numer. Anal. 5 (1968), 882-889.

J. R. Ricg, “The Approximation of Functions,” Vol. 1. “Linear Theory,” Addison—
Wesley, Reading, Mass., 1964.

. R, Rice, “The Approximation of Functions,” Vol. II. “Nonlinear and Multivariate
Theory,” Addison-Wesley, Reading, Mass., 1969.

. H. WeRrNER, Tschebyscheff-approximation with sums of exponentials,” in “Approxima-

tion Theory: Proceedings of a Symposium at Lancaster,” (A. Talbot, Ed.), p. 109-136.
Academic Press, London, 1970,



